Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 39(5): e3371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365962

RESUMO

Process analytical technology (PAT) tools such as Raman Spectroscopy have become established tools for real time measurement of CHO cell bioreactor process variables and are aligned with the QbD approach to manufacturing. These tools can have a significant impact on process development if adopted early, creating an end-to-end PAT/QbD focused process. This study assessed the impact of Raman based feedback control on early and late phase development bioreactors by using a Raman based PLS model and PAT management system to control glucose in two CHO cell line bioreactor processes. The impact was then compared to bioreactor processes which used manual bolus fed methods for glucose feed delivery. Process improvements were observed in terms of overall bioreactor health, product output and product quality. Raman controlled batches for Cell Line 1 showed a reduction in glycation of 43.4% and 57.9%, respectively. Cell Line 2 batches with Raman based feedback control showed an improved growth profile with higher VCD and viability and a resulting 25% increase in overall product titer with an improved glycation profile. The results presented here demonstrate that Raman spectroscopy can be used in both early and late-stage process development and design for consistent and controlled glucose feed delivery.

2.
Biotechnol Prog ; 38(2): e3223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34738336

RESUMO

The Quality by Design (QbD) approach to the production of therapeutic monoclonal antibodies (mAbs) emphasizes an understanding of the production process ensuring product quality is maintained throughout. Current methods for measuring critical quality attributes (CQAs) such as glycation and glycosylation are time and resource intensive, often, only tested offline once per batch process. Process analytical technology (PAT) tools such as Raman spectroscopy combined with chemometric modeling can provide real time measurements process variables and are aligned with the QbD approach. This study utilizes these tools to build partial least squares (PLS) regression models to provide real time monitoring of glycation and glycosylation profiles. In total, seven cell line specific chemometric PLS models; % mono-glycated, % non-glycated, % G0F-GlcNac, % G0, % G0F, % G1F, and % G2F were considered. PLS models were initially developed using small scale data to verify the capability of Raman to measure these CQAs effectively. Accurate PLS model predictions were observed at small scale (5 L). At manufacturing scale (2000 L) some glycosylation models showed higher error, indicating that scale may be a key consideration in glycosylation profile PLS model development. Model robustness was then considered by supplementing models with a single batch of manufacturing scale data. This data addition had a significant impact on the predictive capability of each model, with an improvement of 77.5% in the case of the G2F. The finalized models show the capability of Raman as a PAT tool to deliver real time monitoring of glycation and glycosylation profiles at manufacturing scale.


Assuntos
Reatores Biológicos , Análise Espectral Raman , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação
3.
Bioprocess Biosyst Eng ; 43(8): 1415-1429, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32303846

RESUMO

Multiple process analytical technology (PAT) tools are now being applied in tandem for cell culture. Research presented used two in-line probes, capacitance for a dynamic feeding strategy and Raman spectroscopy for real-time monitoring. Data collected from eight batches at the 15,000 L scale were used to develop process models. Raman spectroscopic data were modelled using Partial Least Squares (PLS) by two methods-(1) use of the full dataset and (2) split the dataset based on the capacitance feeding strategy. Root mean square error of prediction (RMSEP) for the first model method of capacitance was 1.54 pf/cm and the second modelling method was 1.40 pf/cm. The second Raman method demonstrated results within expected process limits for capacitance and a 0.01% difference in total nutrient feed compared to the capacitance probe. Additional variables modelled using Raman spectroscopy were viable cell density (VCD), viability, average cell diameter, and viable cell volume (VCV).


Assuntos
Técnicas de Cultura Celular por Lotes , Modelos Biológicos , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...